Big Stream Data Analytics: Current & Future Trends

Latifur Khan
Professor, Department of Computer Science
The University of Texas at Dallas
www.utdallas.edu/~lkhan

This material is based upon work supported by
Agenda

- Data Streams
- Challenges
- Shortcomings of Current Solutions
- Dynamic Chunk Management
- Limited Labeled Learning
- Experiments
- Applications
- Future Direction
Data Streams

➢ Data Stream:
 – is continuous flow of data.
 – very common in today’s connected digital world.
 – important source of knowledge that enables to take extremely important decisions in (near) real time.

➢ Hence, data stream mining is very important.
Data Stream Classification

- Uses past data to build classification model.
- Predicts the labels of future instances using the model.
- Helps decision making.

Network traffic, Firewall

Expert analysis and labeling

Model update

Block and quarantine

Classification model

Benign traffic

Attack traffic
Challenge: Infinite Length

- Impractical to store and use all historical data
 - requires infinite storage
 - and running time
Challenge: Concept Drift

A data chunk

- Negative instance •
- Positive instance ○

Instances victim of concept-drift •
Challenge: Concept Evolution

Classification rules:

R1. if \((x > x_1 \text{ and } y < y_2)\) or \((x < x_1 \text{ and } y < y_1)\) then class = +

R2. if \((x > x_1 \text{ and } y > y_2)\) or \((x < x_1 \text{ and } y > y_1)\) then class = -

Existing classification models misclassify novel class instances
Existing Techniques: Ensemble based Approaches

Masud et al. [1][2]

![Diagram of ensemble learning approach]

[1] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. ICDM 2008: 929-934

[2] Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei Han, Kevin W. Hamlen, Nikunj C. Oza: Facing the reality of data stream classification: coping with scarcity of labeled data. Knowl. Inf. Syst. 33(1): 213-244 (2011)
Existing Techniques: Ensemble Techniques

- Divide the data stream into equal sized chunks
 - Train a classifier from each data chunk
 - Keep the best t such classifier-ensemble
 - Example: for $t = 3$

Note: D_i may contain data points from different classes
Novel Class Detection

Masud et al. [1][2], Khateeb et al. [3]

- Non parametric
 - does not assume any underlying model of existing classes

- Steps:
 1. Creating and saving decision boundary during training
 2. Detecting and filtering outliers
 3. Measuring cohesion and separation among test and training instances

[1] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Jiawei Han, Ashok N. Srivastava, Nikunj C. Oza: Classification and Adaptive Novel Class Detection of Feature-Evolving Data Streams. IEEE Trans. Knowl. Data Eng. 25(7): 1484-1497 (2013)

[2] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)

[3] Tahseen Al-Khateeb, Mohammad M. Masud, Latifur Khan, Charu C. Aggarwal, Jiawei Han, Bhavani M. Thuraisingham: Stream Classification with Recurring and Novel Class Detection Using Class-Based Ensemble. ICDM 2012: 31-40
Training with Semi-Supervised Clustering

Legend:
- Black dots: unlabeled instances
- Colored dots: labeled instances

Impurity based Clustering
Semi Supervised Clustering

Masud et al. [1][2]

 Assertion objective function (dual minimization problem)

\[\mathcal{O}_{MCIKmeans} = \sum_{i=1}^{K} \left(\sum_{x \in \mathcal{X}_i} ||x - u_i||^2 \right) + \sum_{x \in \mathcal{L}_i} ||x - u_i||^2 \cdot Imp_i \]

Intra-cluster dispersion
Cluster impurity

\[Imp_i = \text{Aggregated dissimilarity count}_i \cdot \text{Entropy}_i = ADC_i \cdot \text{Ent}_i \]

Aggregated dissimilarity count (ADC):

\[ADC_i = \sum_{x \in \mathcal{L}_i} DC(x, y) \]

\[DC(x, y) = \begin{cases} 0 & \text{if } x \text{ is unlabeled (i.e., } y = \phi) \\ |\mathcal{L}_i| - |\mathcal{L}_i(c)| & \text{if } x \text{ is labeled and its label } y=c \end{cases} \]

Entropy (Ent):

\[Ent_i = \sum_{c=1}^{C} (-p^i_c \cdot \log(p^i_c)) \]

The minimization problem is solved using the Expectation-Maximization (E-M) framework.

[1] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. ICDM 2008: 929-934

[2] Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei Han, Kevin W. Hamlen, Nikunj C. Oza: Facing the reality of data stream classification: coping with scarcity of labeled data. Knowl. Inf. Syst. 33(1): 213-244 (2011)
Outlier Detection and Filtering

Test instance inside decision boundary (not outlier)

Test instance outside decision boundary

Raw outlier or Routlier

Test instance inside decision boundary

Routlier

Ensemble of L models

M1

M2

...

Mt

Routlier

Routlier

Routlier

AND

x

X is an existing class instance

True

False

X is a filtered outlier (Foutlier)
(potential novel class instance)

Foutliers may appear as a result of novel class, concept-drift, or noise. Therefore, they are filtered to reduce noise as much as possible.
Novel Class Detection

1. **(Step 1)** Test instance x is fed into an ensemble of L models $M_1, M_2, ..., M_L$.

2. **(Step 2)** The ensemble output is then passed through an AND gate. If x is classified as **True**, it proceeds to the next step; if **False**, it is treated as an existing class instance.

3. **(Step 3)** x is considered a filtered outlier (Foutlier) (potential novel class instance) and is fed to q-NSC with all models.

4. **(Step 4)** If q-NSC > 0 for all models for $q' > q$, then the x is identified as a novel class and the process stops. Otherwise, x is treated as an existing class instance.
Computing Cohesion & Separation

- \(a(x) = \text{mean distance from an Foutlier } x \text{ to the instances in } \lambda_{o,q}(x) \)
- \(b_{\text{min}}(x) = \text{minimum among all } b_c(x) \) (e.g. \(b_+(x) \) in figure)
- \(q\)-Neighborhood Silhouette Coefficient (\(q\)-NSC):

\[
q\text{-NSC}(x) = \frac{(b_{\text{min}}(x) - a(x))}{\max(b_{\text{min}}(x), a(x))}
\]

- If \(q\)-NSC\((x)\) is positive, it means \(x \) is closer to Foutliers than any other class.

\(\lambda_c(x) \) is the set of nearest neighbors of \(x \) belonging to class \(c \)

\(\lambda_o(x) \) is the set of nearest Foutliers of \(x \)
Detection of Concurrent Novel Classes

Masud et al. [1], Faria et al. [2]

• Challenges
 – High false positive (FP) (existing classes detected as novel) and false negative (FN) (missed novel classes) rates
 – Two or more novel classes arrive at a time

• Solutions
 – Dynamic decision boundary – based on previous mistakes
 • Inflate the decision boundary if high FP, deflate if high FN
 – Build statistical model to filter out noise data and concept drift from the outliers.
 – Multiple novel classes are detected by
 • Constructing a graph where outlier cluster is a vertex
 • Merging the vertices based on silhouette coefficient
 • Counting the number of connected components in the resultant (i.e., merged) graph

[1] Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Jiawei Han, Bhavani M. Thuraisingham: Addressing Concept-Evolution in Concept-Drifting Data Streams. ICDM 2010: 929-934
Novel and Recurrence

Khateeb et al. [1]

[1] Tahseen Al-Khateeb, Mohammad M. Masud, Latifur Khan, Charu C. Aggarwal, Jiawei Han, Bhavani M. Thuraisingham: Stream Classification with Recurring and Novel Class Detection Using Class-Based Ensemble. ICDM 2012: 31-40
Challenges: Fixed Chunk Size/ Decay Rate

Masud et al. [1], Parker et al. [2], Aggarwal et al. [3], Klinkenberg[4], Cohen et al. [5]

- Fixed chunk size
 - requires *a priori* knowledge about the time-scale of change.
 - delayed reaction if the chunk size is too large.
 - unnecessary frequent training during stable period if chunk size is too small.

- Fixed decay rate
 - assigns weight to data instances based on their age.
 - decay constant must match the unknown rate of change.

[1] Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)
[2] Brandon Shane Parker, Latifur Khan: Detecting and Tracking Concept Class Drift and Emergence in Non-Stationary Fast Data Streams. AAAI 2015: 2908-2913
[3] Charu C. Aggarwal, Philip S. Yu: On Classification of High-Cardinality Data Streams. SDM 2010: 802-813
Challenges: Fixed Chunk Size

Concept Drifts

- Chunk size too large – Delayed reaction
- Chunk size too small – Performance issue

Correct	Wrong

Time
Solution: Adaptive Chunk Size

Concept Drifts

Adaptive Chunk Size

Correct

Wrong
Adaptive Chunk - Sliding Window

Gamma et al. [1], Bifet et al. [2], Harel et al. [3]

- Existing dynamic sliding window techniques
 - monitor error rate of the classifier.
 - Update classifier if starts to show bad performance.
 - fully supervised, which is not feasible in case of real-world data streams.

Adaptive Chunk - Unsupervised

Haque et al. [1][2]

Input

Prediction using Ensemble

Predicted Class

Classifier Confidence

Distribution Before

Distribution After

Update Classifier & Shrink Window

Change

Yes

No

Grow Window

Adaptive Chunk - Unsupervised

Haque et al. [1][2]

- Prediction using Ensemble
- Predicted Class
- Association
- Purity
- Model 2 Confidence
- Model t Confidence
- Classifier Confidence
- Update Classifier & Shrink Window
- Grow Window
- Change
- Yes
- No

[1] Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani M. Thuraisingham, Charu C. Aggarwal: Efficient handling of concept drift and concept evolution over Stream Data. ICDE 2016: 481-492

For each testing instance x:

- Confidence for i^{th} model, $c_i^x = h_i^x \cdot z_i$

 • $h_i^x = (a_i^x, p_i^x)$ is a vector of estimator values on test instance x.

 • $z_i = \text{vector containing weights of the estimators for } i^{th} \text{ model.}$

To estimate confidence of the entire ensemble, we take the average confidence of the models towards the predicted class.
Let \(h \) be the closest cluster from data instance \(x \) in model \(M_i \), confidence of \(M_i \) in classifying instance \(x \) is calculated based on the following estimators:

- **Association**: \(a_i^x = R_h - D_i(x) \), where \(R_h \) is the radius of \(h \) and \(D_i(x) \) is the distance of \(x \) from \(h \).

- **Purity**: \(p_i^x = \frac{N_m}{N_s} \), where \(N_s \) is the number of labeled instances in \(h \), and \(N_m \) is the number of instances from the majority class in \(h \).

\[\begin{align*}
N_s &= 15, \quad N_m = 14 \\
p_i^x &= 14/15
\end{align*} \]
Big Stream Data: Current & Future

- **Stream Mining***
 - IOT Big Stream Mining—Real Time
 - Security:
 - Encrypted Stream Traffic Analysis
 - Website Fingerprinting

Application (1): Detecting Zero-day attacks

The Distribution of attacks through time

- 28 classes
- Each class has 200 data points
- Chunk size = 100

Chunk contains 1 new attack and 5 existing classes.
Results Detecting Zero-day attacks

<table>
<thead>
<tr>
<th>BiDi Packets:</th>
<th>FP%</th>
<th>FN%</th>
<th>Err%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dxminer 1</td>
<td>26.988</td>
<td>0.0</td>
<td>24.869</td>
</tr>
<tr>
<td>Dxminer + DAE features 2</td>
<td>15.635</td>
<td>42.037</td>
<td>4.396</td>
</tr>
<tr>
<td>BiDi Packets:</td>
<td>26.988</td>
<td>0.0</td>
<td>24.869</td>
</tr>
<tr>
<td>Dxminer + DAE features 2</td>
<td>15.635</td>
<td>42.037</td>
<td>4.396</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N-grams SysCalls:</th>
<th>FP%</th>
<th>FN%</th>
<th>Err%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dxminer 1</td>
<td>31.87</td>
<td>19.33</td>
<td>21.414</td>
</tr>
<tr>
<td>Dxminer + DAE features 2</td>
<td>4.761</td>
<td>46.754</td>
<td>17.66</td>
</tr>
<tr>
<td>N-grams SysCalls:</td>
<td>31.87</td>
<td>19.33</td>
<td>21.414</td>
</tr>
<tr>
<td>Dxminer + DAE features 2</td>
<td>4.761</td>
<td>46.754</td>
<td>17.66</td>
</tr>
</tbody>
</table>

- Dxminer\(^1\) = novel class detection method
- DAE\(^2\) = Denoising Autoencoders features

Spark-based Real-time Anomaly Detection: Framework (Application 2)

- **Stream Data Mining Module**

- **Experimental Result**

<table>
<thead>
<tr>
<th>Component</th>
<th>Number of parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker for emitting tuples</td>
<td>05</td>
</tr>
<tr>
<td>Worker for clustering</td>
<td>08</td>
</tr>
<tr>
<td>Worker for prediction</td>
<td>08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of data points</th>
<th>Number of clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset 1</td>
<td>10,000</td>
<td>63</td>
</tr>
<tr>
<td>Dataset 2</td>
<td>10,000</td>
<td>134</td>
</tr>
</tbody>
</table>

Cluster Environment

- Experimental Result
 - Dataset 1 - Performance data of Spark jobs
 - Dataset 2 - Performance data for Yahoo Cloud Service Benchmark database operation.

Technical Approach

Technical Approach

Cluster Environment

<table>
<thead>
<tr>
<th>Component</th>
<th>Number of parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worker for emitting tuples</td>
<td>05</td>
</tr>
<tr>
<td>Worker for statistical analysis</td>
<td>08</td>
</tr>
</tbody>
</table>

Statistical Model

<table>
<thead>
<tr>
<th>Number of data point</th>
<th>Dataset 1</th>
<th>Dataset 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of windows</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Total Number of points</td>
<td>80,000</td>
<td>80,000</td>
</tr>
</tbody>
</table>

Testing

<table>
<thead>
<tr>
<th>Method</th>
<th>TPR</th>
<th>FNR</th>
<th>TNR</th>
<th>FPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-square based Online model</td>
<td>90.00%</td>
<td>10.00%</td>
<td>98.80%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Base-line offline method</td>
<td>8.24%</td>
<td>91.76%</td>
<td>99.16%</td>
<td>0.84%</td>
</tr>
</tbody>
</table>

Application (3): Encrypted Traffic Fingerprinting

Al-Naami et al. [1][2]

- Traffic Fingerprinting (TFP) is a Traffic Analysis (TA) attack that threatens web/app navigation privacy.
- TFP allows attackers to learn information about a website/app accessed by the user, by recognizing patterns in traffic.
- Examples: Website Fingerprinting

A Framework To Recommend New Political Actors With Role In Real-time (4)

- Dictionary (CAMEO) development requires
 - Human involvement
 - Not up-to-date
 - Higher Cost
 - Processing large number of articles

- Our Goal:
 - Reduce human effort and cost
 - Recommending news actor real-time
 - Update dictionary
A Framework To Recommend New

- Political with multiple alias names,
 - e.g., Barack Hussein Obama’, ‘Barack Obama’, etc.

- Role of a political actor changes over time.
 - e.g., ’Shimon Peres’ has multiple political roles in Israel

- Processing a large volume of news articles
 - demands scalable, distributed computing
A Framework To Recommend New Political Actors With Role In Real-time

- A real-time framework for recommendation
 - Possible new actors with their roles
 - Grouping actor aliases

- Frequency-based actor ranking algorithm

- A graph-based technique to recommend roles
 - A new actor
 - Existing actor whose role varies over time
 - Integrating external knowledge base (e.g., Wikipedia)

- Time window-based recommendation system.
Real-time Political Actor Detection Over Textual Political Stream

Challenges

✓ Same actor with multiple alias names
✓ Identify novel actor along with roles
✓ Existing political actor’s role changes over time
✓ Processing high volume of news articles across the world
Future Direction

- Adversarial active learning
 - Traditional algorithms are vulnerable to adversarial manipulation.
 - Instances should be selected carefully.
- Efficient online change detection
- Deep Learning Guided Stream Mining
- Multi-stream Analytics
References

- Ahsanul Haque, Latifur Khan, Michael Baron, Bhavani M. Thuraisingham, Charu C. Aggarwal: *Efficient handling of concept drift and concept evolution over Stream Data*. ICDE 2016: 481-492
- Swarup Chandra, Ahsanul Haque, Latifur Khan, Charu C. Aggarwal: *An Adaptive Framework for Multistream Classification*. CIKM 2016: 1181-1190
- Khaled Al-Naami, Swarup Chandra, Ahmad M. Mustafa, Latifur Khan, Zhiqiang Lin, Kevin W. Hamlen, Bhavani M. Thuraisingham: *Adaptive encrypted traffic fingerprinting with bi-directional dependence*. ACSAC 2016: 177-188
- Parker, B., Khan, L.: *Detecting and tracking concept class drift and emergence in non-stationary fast data streams*. In: Twenty-Ninth AAAI Conference on Artificial Intelligence. (Jan 2015).
- Tahseen Al-Khateeb, Mohammad M. Masud, Latifur Khan, Charu C. Aggarwal, Jiawei Han, Bhavani M. Thuraisingham: *Stream Classification with Recurring and Novel Class Detection Using Class-Based Ensemble*. ICDM 2012: 31-40
- Mohammad M. Masud, Qing Chen, Latifur Khan, Charu C. Aggarwal, Jing Gao, Jiawei Han, Ashok N. Srivastava, Nikunj C. Oza: *Classification and Adaptive Novel Class Detection of Feature-Evolving Data Streams*. IEEE Trans. Knowl. Data Eng. 25(7): 1484-1497 (2013)
- Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: *Classification and Novel Class Detection in Concept-Drifting Data Streams under Time Constraints*. IEEE Trans. Knowl. Data Eng. 23(6): 859-874 (2011)
- Mohammad M. Masud, Jing Gao, Latifur Khan, Jiawei Han, Bhavani M. Thuraisingham: *A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data*. ICDM 2008: 929-934
- Mohammad M. Masud, Clay Woolam, Jing Gao, Latifur Khan, Jiawei Han, Kevin W. Hamlen, Nikunj C. Oza: *Facing the reality of data stream classification: coping with scarcity of labeled data*. Knowl. Inf. Syst. 33(1): 213-244 (2011)
- Charu C. Aggarwal, Philip S. Yu: *On Classification of High-Cardinality Data Streams*. SDM 2010: 802-813
- Wei Fan, Yi-an Huang, Haixun Wang, Philip S. Yu: *Active Mining of Data Streams*. SDM 2004: 457-461
- Xingquan Zhu, Peng Zhang, Xiaodong Lin, Yong Shi: *Active Learning from Data Streams*. ICDM 2007: 757-762